Multi-locus transcranial magnetic stimulation system for electronically targeted brain stimulation

Abstract

Background Transcranial magnetic stimulation (TMS) allows non-invasive stimulation of the cortex. In multi-locus TMS (mTMS), the stimulating electric field (E-field) is controlled electronically without coil movement by adjusting currents in the coils of a transducer. Objective To develop an mTMS system that allows adjusting the location and orientation of the E-field maximum within a cortical region. Methods We designed and manufactured a planar 5-coil mTMS transducer to allow controlling the maximum of the induced E-field within a cortical region approximately 30 mm in diameter. We developed electronics with a design consisting of independently controlled H-bridge circuits to drive up to six TMS coils. To control the hardware, we programmed software that runs on a field-programmable gate array and a computer. To induce the desired E-field in the cortex, we developed an optimization method to calculate the currents needed in the coils. We characterized the mTMS system and conducted a proof-of-concept motor-mapping experiment on a healthy volunteer. In the motor mapping, we kept the transducer placement fixed while electronically shifting the E-field maximum on the precentral gyrus and measuring electromyography from the contralateral hand. Results The transducer consists of an oval coil, two figure-of-eight coils, and two four-leaf-clover coils stacked on top of each other. The technical characterization indicated that the mTMS system performs as designed. The measured motor evoked potential amplitudes varied consistently as a function of the location of the E-field maximum. Conclusion The developed mTMS system enables electronically targeted brain stimulation within a cortical region. ### Competing Interest Statement J.O.N., L.M.K, and R.J.I. are inventors on patents and patent applications on mTMS technology. R.J.I. has been advisor and minority shareholder of Nexstim Plc.

Publication
Brain Stimulation
Victor H. Souza
Victor H. Souza
Research Fellow

I develop instrumentation for brain stimulation and image-guided navigation.